Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2307289, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057127

RESUMO

With shrinking dimensions in integrated circuits, sensors, and functional devices, there is a pressing need to develop nanofabrication techniques with simultaneous control of morphology, microstructure, and material composition over wafer length scales. Current techniques are largely unable to meet all these conditions, suffering from poor control of morphology and defect structure or requiring extensive optimization or post-processing to achieve desired nanostructures. Recently, thermomechanical nanomolding (TMNM) has been shown to yield single-crystalline, high aspect ratio nanowires of metals, alloys, and intermetallics over wafer-scale distances. Here, TMNM is extended for wafer-scale fabrication of 2D nanostructures. Using In, Al, and Cu, nanomold nanoribbons with widths < 50 nm, depths ≈0.5-1 µm and lengths ≈7 mm into Si trenches at conditions compatible is successfully with back end of line processing . Through SEM cross-section imaging and 4D-STEM grain orientation maps, it is shown that the grain size of the bulk feedstock is transferred to the nanomolded structures up to and including single crystal Cu. Based on the retained microstructures of molded 2D Cu, the deformation mechanism during molding for 2D TMNM is discussed.

2.
Nat Commun ; 14(1): 5402, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669945

RESUMO

Suppressing the oxidation of active-Ir(III) in IrOx catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrOx catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrOx catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrOx catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm-2. Moreover, Ir-specific power (74.8 kW g-1) indicates its remarkable potential for realizing gigawatt-scale H2 production for the first time.

3.
Adv Mater ; 35(13): e2208965, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36745845

RESUMO

The increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects. Here, we report the unprecedented resistivity scaling of topological metal molybdenum phosphide (MoP) nanowires, and it is shown that the resistivity values are superior to those of nanoscale Cu interconnects <500 nm2 cross-section areas. The cohesive energy of MoP suggests better stability against electromigration, enabling a barrier-free design . MoP nanowires are more resistant to surface oxidation than the 20 nm thick Cu. The thermal conductivity of MoP is comparable to those of Ru and Co. Most importantly, it is demonstrated that the dimensional scaling of MoP, in terms of line resistance versus total cross-sectional area, is competitive to those of effective Cu with barrier/liner and barrier-less Ru, suggesting MoP is an attractive alternative for the scaling challenge of Cu interconnects.

4.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203574

RESUMO

Over the last ten years, the discovery of topological materials has opened up new areas in condensed matter physics. These materials are noted for their distinctive electronic properties, unlike conventional insulators and metals. This discovery has not only spurred new research areas but also offered innovative approaches to electronic device design. A key aspect of these materials is now that transforming them into nanostructures enhances the presence of surface or edge states, which are the key components for their unique electronic properties. In this review, we focus on recent synthesis methods, including vapor-liquid-solid (VLS) growth, chemical vapor deposition (CVD), and chemical conversion techniques. Moreover, the scaling down of topological nanomaterials has revealed new electronic and magnetic properties due to quantum confinement. This review covers their synthesis methods and the outcomes of topological nanomaterials and applications, including quantum computing, spintronics, and interconnects. Finally, we address the materials and synthesis challenges that need to be resolved prior to the practical application of topological nanomaterials in advanced electronic devices.


Assuntos
Metodologias Computacionais , Nanoestruturas , Teoria Quântica , Eletrônica , Gases
5.
Sci Adv ; 7(41): eabh2012, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623908

RESUMO

Nanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons. Despite the high annealing temperatures, the average grain size was maintained at ~6 nm, which also retained their structural integrity. We observe that excess oxygen in amorphous tin oxide nanoribbons prevents merging of small grains during crystallization, leading to suppressed grain growth. As an exemplary application, we demonstrate a gas sensor using grain growth­suppressed tin oxide nanoribbons, which exhibited both high sensitivity and unusual long-term operation stability. Our findings provide a previously unknown pathway to simultaneously achieve high performance and excellent thermal stability in nanograined metal oxide nanostructures.

6.
Adv Mater ; 33(44): e2105199, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34569647

RESUMO

Practical sensing applications such as real-time safety alerts and clinical diagnoses require sensor devices to differentiate between various target molecules with high sensitivity and selectivity, yet conventional devices such as oxide-based chemo-resistive sensors and metal-based surface-enhanced Raman spectroscopy (SERS) sensors usually do not satisfy such requirements. Here, a label-free, chemo-resistive/SERS multimodal sensor based on a systematically assembled 3D cross-point multifunctional nanoarchitecture (3D-CMA), which has unusually strong enhancements in both "chemo-resistive" and "SERS" sensing characteristics is introduced. 3D-CMA combines several sensing mechanisms and sensing elements via 3D integration of semiconducting SnO2 nanowire frameworks and dual-functioning Au metallic nanoparticles. It is shown that the multimodal sensor can successfully estimate mixed-gas compositions selectively and quantitatively at the sub-100 ppm level, even for mixtures of gaseous aromatic compounds (nitrobenzene and toluene) with very similar molecular structures. This is enabled by combined chemo-resistive and SERS multimodal sensing providing complementary information.


Assuntos
Nanopartículas Metálicas
7.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290086

RESUMO

Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.

8.
Nat Commun ; 11(1): 4921, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004820

RESUMO

Despite highly promising characteristics of three-dimensionally (3D) nanostructured catalysts for the oxygen evolution reaction (OER) in polymer electrolyte membrane water electrolyzers (PEMWEs), universal design rules for maximizing their performance have not been explored. Here we show that woodpile (WP)-structured Ir, consisting of 3D-printed, highly-ordered Ir nanowire building blocks, improve OER mass activity markedly. The WP structure secures the electrochemically active surface area (ECSA) through enhanced utilization efficiency of the extended surface area of 3D WP catalysts. Moreover, systematic control of the 3D geometry combined with theoretical calculations and various electrochemical analyses reveals that facile transport of evolved O2 gas bubbles is an important contributor to the improved ECSA-specific activity. The 3D nanostructuring-based improvement of ECSA and ECSA-specific activity enables our well-controlled geometry to afford a 30-fold higher mass activity of the OER catalyst when used in a single-cell PEMWE than conventional nanoparticle-based catalysts.

9.
Adv Mater ; 32(38): e2002099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33617118

RESUMO

Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN-BN, BN-membrane, and BN-substrate boundaries. Therefore, without incorporating any additives in the BN film and applying any surface treatment on target substrates, DIAS achieves a near 100% transfer yield of pure BN films on diverse substrates, including substrates containing significant surface irregularities. The printed BNs demonstrate high optical transparency (>90%) and excellent thermal conductivity (>167 W m-1 K-1) for few-micrometer-thick films due to their dense and well-ordered microstructures. In addition to outstanding heat dissipation capability, substantial optical enhancement effects are confirmed for light-emitting, photoluminescent, and photovoltaic devices, demonstrating their remarkable promise for next-generation optoelectronic device platforms.

10.
Nano Lett ; 19(10): 6827-6838, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31476862

RESUMO

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene-b-4-vinylpyridine)) (PS-b-P4VP) block copolymer (BCP). A BCP matrix casted under controlled humidity provides multiscale phase-separation features based on (1) submicrometer-scale spinodal decomposition between polymer-rich and water-rich phases and (2) sub-10 nm-scale microphase separation between polymer blocks. The BCP-QD composite containing bicontinuous random pores achieves significant enhancement of both light absorption and extraction efficiencies via effective random light scattering. Moreover, the microphase-separated morphology substantially reduces the Förster resonance energy transfer efficiency from 53% (pure QD film) to 22% (BCP-QD composite), collectively achieving an unprecedented 21-fold enhanced PL over a broad spectral range.

11.
ACS Appl Mater Interfaces ; 11(37): 34100-34108, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436079

RESUMO

Two-dimensional (2D) inorganic nanomaterials have attracted enormous interest in diverse research areas because of their intriguing physicochemical properties. However, reliable method for the synthesis and composition manipulation of polycrystalline inorganic nanosheets (NSs) are still considered grand challenges. Here, we report a robust synthetic route for producing various kinds of inorganic porous NSs with desired multiple components and precise compositional stoichiometry by employing tunicin, i.e., cellulose extracted from earth-abundant marine invertebrate shell waste. Cellulose fibrils can be tightly immobilized on graphene oxide (GO) NSs to form stable tunicin-loaded GO NSs, which are used as a sacrificial template for homogeneous adsorption of diverse metal precursors. After a subsequent pyrolysis process, 2D metallic or metal oxide NSs are formed without any structural collapse. The rationally designed tunicin-loaded GO NS templating route paves a new path for the simple preparation of multicompositional inorganic NSs for broad applications, including chemical sensing and electrocatalysis.

12.
ACS Appl Mater Interfaces ; 11(17): 15952-15959, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30938501

RESUMO

Herein, we report a siloxane-encapsulated upconversion nanoparticle hybrid composite (SE-UCNP), which exhibits excellent photoluminescence (PL) stability for over 40 days even at an elevated temperature, in high humidity, and in harsh chemicals. The SE-UCNP is synthesized through UV-induced free-radical polymerization of a sol-gel-derived UCNP-containing oligosiloxane resin (UCNP-oligosiloxane). The siloxane matrix with a random network structure by Si-O-Si bonds successfully encapsulates the UCNPs with chemical linkages between the siloxane matrix and organic ligands on UCNPs. This encapsulation results in surface passivation retaining the intrinsic fluorescent properties of UCNPs under severe conditions (e.g., 85 °C/85% relative humidity) and a wide range of pH (from 1 to 14). As an application example, we fabricate a two-color binary microbarcode based on SE-UCNP via a low-cost transfer printing process. Under near-infrared irradiation, the binary sequences in our barcode are readable enough to identify objects using a mobile phone camera. The hybridization of UCNPs with a siloxane matrix provides the capacity for highly stable UCNP-based applications in real environments.

14.
Nano Lett ; 18(5): 2893-2902, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29613806

RESUMO

Despite the outstanding physical and chemical properties of two-dimensional (2D) materials, due to their extremely thin nature, eliminating detrimental substrate effects such as serious degradation of charge-carrier mobility or light-emission yield remains a major challenge. However, previous approaches have suffered from limitations such as structural instability or the need of costly and high-temperature deposition processes. Herein, we propose a new strategy based on the insertion of high-density topographic nanopatterns as a nanogap-containing supporter between 2D materials and substrate to minimize their contact and to block the substrate-induced undesirable effects. We show that well-controlled high-frequency SiO x nanopillar structures derived from the self-assembly of Si-containing block copolymer securely prevent the collapse or deformation of transferred MoS2 and guarantee excellent mechanical stability. The nanogap supporters formed below monolayer MoS2 lead to dramatic enhancement of the photoluminescence emission intensity (8.7-fold), field-effect mobility (2.0-fold, with a maximum of 4.3-fold), and photoresponsivity (12.1-fold) compared to the sample on flat SiO2. Similar favorable effects observed for graphene strongly suggest that this simple but powerful nanogap-supporting method can be extensively applicable to a variety of low-dimensional materials and contribute to improved device performance.

15.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29369498

RESUMO

A hydrogen (H2 ) gas sensor based on a silicon (Si) nanomesh structure decorated with palladium (Pd) nanoparticles is fabricated via polystyrene nanosphere lithography and top-down fabrication processes. The gas sensor shows dramatically improved H2 gas sensitivity compared with an Si thin film sensor without nanopatterns. Furthermore, a buffered oxide etchant treatment of the Si nanomesh structure results in an additional performance improvement. The final sensor device shows fast H2 response and high selectivity to H2 gas among other gases. The sensing performance is stable and shows repeatable responses in both dry and high humidity ambient environments. The sensor also shows high stability without noticeable performance degradation after one month. This approach allows the facile fabrication of high performance H2 sensors via a cost-effective, complementary metal-oxide-semiconductor (CMOS) compatible, and scalable nanopatterning method.

16.
ACS Nano ; 11(11): 11642-11652, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29131582

RESUMO

The fabrication of a highly ordered array of single-crystalline nanostructures prepared from solution-phase or vapor-phase synthesis methods is extremely challenging due to multiple difficulties of spatial arrangement and control of crystallographic orientation. Herein, we introduce a nanotransplantation printing (NTPP) technique for the reliable fabrication, transfer, and arrangement of single-crystalline Si nanowires (NWs) on diverse substrates. NTPP entails (1) formation of nanoscale etch mask patterns on conventional low-cost Si via nanotransfer printing, (2) two-step combinatorial plasma etching for defining Si NWs, and (3) detachment and transfer of the NWs onto various receiver substrates using an infiltration-type polymeric transfer medium and a solvent-assisted adhesion switching mechanism. Using this approach, high-quality, highly ordered Si NWs can be formed on almost any type of surface including flexible plastic substrates, biological surfaces, and deep-trench structures. Moreover, NTPP provides controllability of the crystallographic orientation of NWs, which is confirmed by the successful generation of (100)- and (110)-oriented Si NWs with different properties. The outstanding electrical properties of the NWs were confirmed by fabricating and characterizing Schottky junction field-effect transistors. Furthermore, exploiting the highly flexible nature of the NWs, a high-performance piezoresistive strain sensor, with a high gauge factor over 200 was realized.

17.
ACS Nano ; 11(4): 3506-3516, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28245104

RESUMO

With the recent emergence of flexible and wearable optoelectronic devices, the achievement of sufficient bendability and stretchability of transparent and conducting electrodes (TCEs) has become an important requirement. Although metal-mesh-based structures have been investigated for TCEs because of their excellent performances, the fabrication of mesh or grid structures with a submicron line width is still complex due to the requirements of laborious lithography and pattern transfer steps. Here, we introduce an extremely facile fabrication technique for metal patterns embedded in a flexible substrate based on submicron replication and an area-selective delamination (ASD) pattern. The high-yield, area-specific lift-off process is based on the principle of solvent-assisted delamination of deposited metal thin films and a mechanical triggering effect by soft wiping or ultrasonication. Our fabrication process is very simple, convenient, and cost-effective in that it does not require any lithography/etching steps or sophisticated facilities. Moreover, their outstanding optical and electrical properties (e.g., sheet resistances of 0.43 Ω sq-1 at 94% transmittance), which are markedly superior to those of other flexible TCEs, are demonstrated. Furthermore, there is no significant change of resistance over 1000 repeated bending cycles, with a bending radius of 5 mm, and immersion in various solvents such as salt water and organic solvents. Finally, we demonstrate high-performance transparent heaters and flexible touch panels fabricated using the nanomesh electrode, confirming the long-range electrical conduction and reliability of the electrode.

18.
ACS Omega ; 2(8): 4678-4687, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457753

RESUMO

Chemical exfoliation approaches such as Li-intercalation for the production of two-dimensional MoS2 are highly attractive due to their high yield of monolayer forms, cost-effectiveness, and mass-scalability. However, the loss of the semiconducting property and poor dispersion stability in solvent have limited the extent of their potential applications. Here, we report simultaneous phase recovery and surface functionalization for the preparation of a highly stable 2H-MoS2 dispersion in water. This study shows that high-yield restoration of the semiconducting 2H phase from a chemically exfoliated MoS2 (ce-MoS2) can be induced by a mild-temperature (180 °C) solvent thermal treatment in N-methyl-2-pyrrolidone (NMP). In addition to a phase transition, this solvent thermal treatment in NMP realizes concurrent surface functionalization of the 2H-MoS2 surface, which provides an outstanding dispersion stability to 2H-MoS2 in water for more than 10 months. Finally, we report the humidity sensor based on the functionalized 2H-MoS2, which shows a substantial response enhancement compared with a nonfunctionalized 2H-MoS2 or ce-MoS2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...